Only in Titles

Search results for: TETRABROMORHODAMINE 123, BROMIDE

paperclip

#14556310   // To Up

Ca(2+)-dependent and caspase-3-independent apoptosis caused by damage in Golgi apparatus due to 2,4,5,7-tetrabromorhodamine 123 bromide-induced photodynamic effects.

To clarify the role of the Golgi apparatus in photodynamic therapy-induced apoptosis, its signaling pathway was studied after photodynamic treatment of human cervix carcinoma cell line HeLa, in which a photosensitizer, 2,4,5,7-tetrabromorhodamine 123 bromide (TBR), was incorporated into the Golgi apparatus. Laser scanning microscopic analysis of TBR-loaded HeLa cells confirmed that TBR was exclusively located in the Golgi apparatus. HeLa cells incubated with TBR for 1 h were then exposed to visible light using an Xe lamp. Light of wavelength below 670 nm was eliminated with a filter. Morphological observation of nuclei stained with Hoechst 33342 revealed that apoptosis of cells was induced by exposure to light. Electron spin resonance spectrometry showed that light-exposed TBR produced both singlet oxygen (1O2) and superoxide anion (O2-). Apoptosis induction by TBR was inhibited by pyrrolidine dithiocarbamate, an O2- scavenger, but not by NaN3, a quencher of 1O2. Furthermore, TBR-induced apoptosis was inhibited by aurintricarboxylic acid and ZnCl2, which are known as inhibitors of deoxyribonuclease (DNase) gamma, and (acetoxymethyl)-1,2-bis(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid, a chelator of Ca2+, but not by acetyl Asp-Glu-Val-Asp-aldehyde, an inhibitor of caspase-3. These results suggested that O2- was responsible for TBR-induced apoptosis, and Ca(2+)-dependent and caspase-3-independent nuclease such as DNase gamma played an important role in apoptotic signaling triggered by Golgi dysfunction.
Maiko Ogata, Osamu Inanami, Mihoko Nakajima, Takayuki Nakajima, Wakako Hiraoka, Mikinori Kuwabara

2554 related Products with: Ca(2+)-dependent and caspase-3-independent apoptosis caused by damage in Golgi apparatus due to 2,4,5,7-tetrabromorhodamine 123 bromide-induced photodynamic effects.

96 assays100 mg100 50100 3 mg100 20 1 kit100 µl (2 mM)5 x 25 ul1 kit

Related Pathways

paperclip

#12667484   // To Up

"Mitochondrial" photochemical drugs do not release toxic amounts of 1O(2) within the mitochondrial matrix space.

Previously, we demonstrated that mitochondrial NAD(P)H is the primary target of singlet oxygen (1O(2)) generated by photoactivation of mitochondria-selective rhodamine derivatives. Hence, local NAD(P)H oxidation/fluorescence decrease may be used to reveal the site of intracellular 1O(2) generation. Therefore, in addition to the previously used tetramethylrhodamine methylester (TMRM), 2('),4('),5('),7(')-tetrabromorhodamine 123 bromide (TBRB) and rhodamine 123 (Rho 123), we tested here whether mitochondrial NAD(P)H of cultured hepatocytes is directly oxidized upon irradiation of different "mitochondrial" photosensitizers (Photofrin; protoporphyrin IX; Al(III) phthalocyanine chloride tetrasulfonic acid; meso-tetra(4-sulfonatophenyl)porphine dihydrochloride; Visudyne). In contrast to TMRM and Rho 123, which directly oxidized NAD(P)H upon irradiation, irradiation of intracellular TBRB and the photochemical drugs only indirectly affected mitochondrial NAD(P)H due to loss of mitochondrial integrity. In line with this result only TMRM and Rho 123 exclusively localized within the mitochondrial matrix. Due to these results it is doubtful whether real mitochondrial photosensitizers actually exist among the photochemical drugs applicable/used for photodynamic therapy.
Frank Petrat, Stanislaw Pindiur, Michael Kirsch, Herbert de Groot

1836 related Products with: "Mitochondrial" photochemical drugs do not release toxic amounts of 1O(2) within the mitochondrial matrix space.

96T 100ul1 kit100ug96T 100ul0.1 ml1 kit1 mL1 kit

Related Pathways

paperclip

#12433931   2002/11/13 To Up

NAD(P)H, a primary target of 1O2 in mitochondria of intact cells.

Direct reaction of NAD(P)H with oxidants like singlet oxygen ((1)O(2)) has not yet been demonstrated in biological systems. We therefore chose different rhodamine derivatives (tetramethylrhodamine methyl ester, TMRM; 2',4',5',7'-tetrabromorhodamine 123 bromide; and rhodamine 123; Rho 123) to selectively generate singlet oxygen within the NAD(P)H-rich mitochondrial matrix of cultured hepatocytes. In a cell-free system, photoactivation of all of these dyes led to the formation of (1)O(2), which readily oxidized NAD(P)H to NAD(P)(+). In hepatocytes loaded with the various dyes only TMRM and Rho 123 proved suited to generating (1)O(2) within the mitochondrial matrix space. Photoactivation of the intracellular dyes (TMRM for 5-10 s, Rho 123 for 60 s) led to a significant (29.6 +/- 8.2 and 30.2 +/- 5.2%) and rapid decrease in mitochondrial NAD(P)H fluorescence followed by a slow increase. Prolonged photoactivation (> or =15 s) of TMRM-loaded cells resulted in even stronger NAD(P)H oxidation, the rapid onset of mitochondrial permeability transition, and apoptotic cell death. These results demonstrate that NAD(P)H is the primary target for (1)O(2) in hepatocyte mitochondria. Thus NAD(P)H may operate directly as an intracellular antioxidant, as long as it is regenerated. At cell-injurious concentrations of the oxidant, however, NAD(P)H depletion may be the event that triggers cell death.
Frank Petrat, Stanislaw Pindiur, Michael Kirsch, Herbert de Groot

1287 related Products with: NAD(P)H, a primary target of 1O2 in mitochondria of intact cells.

0.1ml100 µg96 tests0.1ml (1mg/ml)0.5 mg1mg0.1ml1 mg0.1ml (1mg/ml)1mg0.1ml

Related Pathways