Only in Titles

           Search results for: PDK1, Active Human Recombinant Protein   

paperclip

#22398726   2012/04/30 Save this To Up

PDK1 in apical signaling endosomes participates in the rescue of the polarity complex atypical PKC by intermediate filaments in intestinal epithelia.

Phosphorylation of the activation domain of protein kinase C (PKC) isoforms is essential to start a conformational change that results in an active catalytic domain. This activation is necessary not only for newly synthesized molecules, but also for kinase molecules that become dephosphorylated and need to be refolded and rephosphorylated. This "rescue" mechanism is responsible for the maintenance of the steady-state levels of atypical PKC (aPKC [PKCι/λ and ζ]) and is blocked in inflammation. Although there is consensus that phosphoinositide-dependent protein kinase 1 (PDK1) is the activating kinase for newly synthesized molecules, it is unclear what kinase performs that function during the rescue and where the rescue takes place. To identify the activating kinase during the rescue mechanism, we inhibited protein synthesis and analyzed the stability of the remaining aPKC pool. PDK1 knockdown and two different PDK1 inhibitors-BX-912 and a specific pseudosubstrate peptide-destabilized PKCι. PDK1 coimmunoprecipitated with PKCι in cells without protein synthesis, confirming that the interaction is direct. In addition, we showed that PDK1 aids the rescue of aPKC in in vitro rephosphorylation assays using immunodepletion and rescue with recombinant protein. Surprisingly, we found that in Caco-2 epithelial cells and intestinal crypt enterocytes PDK1 distributes to an apical membrane compartment comprising plasma membrane and apical endosomes, which, in turn, are in close contact with intermediate filaments. PDK1 comigrated with the Rab11 compartment and, to some extent, with the transferrin compartment in sucrose gradients. PDK1, pT555-aPKC, and pAkt were dependent on dynamin activity. These results highlight a novel signaling function of apical endosomes in polarized cells.

1965 related Products with: PDK1 in apical signaling endosomes participates in the rescue of the polarity complex atypical PKC by intermediate filaments in intestinal epithelia.

Thermal Shaker with cooli FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu Multiple organ tumor tiss MultiGene Gradient therm Anti AGO2 Human, Monoclon Anti AGO2 Mouse, Monoclon Anti AGO2 Human, Monoclon

Related Pathways

paperclip

#21863889   2011/10/06 Save this To Up

4-benzimidazolyl-3-phenylbutanoic acids as novel PIF-pocket-targeting allosteric inhibitors of protein kinase PKCζ.

Protein kinase inhibitors with an allosteric mode of action are expected to reach, in many cases, higher selectivity for the target enzyme than ATP-competitive compounds. Therefore, basic research is aiming at identifying and establishing novel sites on the catalytic domain of protein kinases which might be targeted by allosteric inhibitors. We previously published the first structure-activity relationships (SARs) for allosteric activators of protein kinase PDK1. Here, we present the design, synthesis, and SAR data on a series of novel compounds, 4-benzimidazolyl-3-phenylbutanoic acids, that inhibit the atypical protein kinace C (PKC) ζ via binding to the PIF-pocket. Key positions were identified in the compounds that can be modified to increase potency and selectivity. Some congeners showed a high selectivity toward PKCζ, lacking inhibition of the most closely related isoform, PKCι, and of further AGC kinases. Furthermore, evidence is provided that these compounds are also active toward cellular PKCζ without loss of potency compared to the cell-free assay.

2274 related Products with: 4-benzimidazolyl-3-phenylbutanoic acids as novel PIF-pocket-targeting allosteric inhibitors of protein kinase PKCζ.

EnzyChrom™ Kinase Assay PKA (Protein Kinase A) Ac Recombinant Human ASF1A P Recombinant Human ASF1A P Recombinant Human ASF1A P Recombinant Polyphosphate Recombinant Polyphosphate Recombinant Polyphosphate Triglyceride Assay Kit Li Anti AGE 3 Monoclonal Ant Amplite™ Universal Fluo anti GFP antibody, rat mo

Related Pathways

paperclip

#18024423   2008/01/14 Save this To Up

Regulation of 3-phosphoinositide-dependent protein kinase-1 (PDK1) by Src involves tyrosine phosphorylation of PDK1 and Src homology 2 domain binding.

3-Phosphoinositide-dependent protein kinase-1 (PDK1) appears to play a central regulatory role in many cell signalings between phosphoinositide-3 kinase and various intracellular serine/threonine kinases. In resting cells, PDK1 is known to be constitutively active and is further activated by tyrosine phosphorylation (Tyr(9) and Tyr(373/376)) following the treatment of the cell with insulin or pervanadate. However, little is known about the mechanisms for this additional activation of PDK1. Here, we report that the SH2 domain of Src, Crk, and GAP recognized tyrosine-phosphorylated PDK1 in vitro. Destabilization of PDK1 induced by geldanamycin (a Hsp90 inhibitor) was partially blocked in HEK 293 cells expressing PDK1-Y9F. Co-expression of Hsp90 enhanced PDK1-Src complex formation and led to further increased PDK1 activity toward PKB and SGK. Immunohistochemical analysis with anti-phospho-Tyr(9) antibodies showed that the level of Tyr(9) phosphorylation was markedly increased in tumor samples compared with normal. Taken together, these data suggest that phosphorylation of PDK1 on Tyr(9), distinct from Tyr(373/376), is important for PDK1/Src complex formation, leading to PDK1 activation. Furthermore, Tyr(9) phosphorylation is critical for the stabilization of both PDK1 and the PDK1/Src complex via Hsp90-mediated protection of PDK1 degradation.

2669 related Products with: Regulation of 3-phosphoinositide-dependent protein kinase-1 (PDK1) by Src involves tyrosine phosphorylation of PDK1 and Src homology 2 domain binding.

p130Cas-associated protei to M-Calpain (E.C. 3.4.2 SH3 domain-binding protei Recombinant Human C-SRC P Recombinant Human PDK1 Pr Recombinant Human PDK1 Pr RNA binding motif protein Rabbit Anti-IEX1 Differen Rabbit Anti-IEX1 Differen Rabbit Anti-Rat Androgen anti-Vitamin D binding pr Anti-ADAMTS-2 (A Disintig

Related Pathways

paperclip

#17242405   2007/05/14 Save this To Up

Identification of ChChd3 as a novel substrate of the cAMP-dependent protein kinase (PKA) using an analog-sensitive catalytic subunit.

Due to the numerous kinases in the cell, many with overlapping substrates, it is difficult to find novel substrates for a specific kinase. To identify novel substrates of cAMP-dependent protein kinase (PKA), the PKA catalytic subunit was engineered to accept bulky N(6)-substituted ATP analogs, using a chemical genetics approach initially pioneered with v-Src (1). Methionine 120 was mutated to glycine in the ATP-binding pocket of the catalytic subunit. To express the stable mutant C-subunit in Escherichia coli required co-expression with PDK1. This mutant protein was active and fully phosphorylated on Thr(197) and Ser(338). Based on its kinetic properties, the engineered C-subunit preferred N(6)(benzyl)-ATP and N(6)(phenethyl)-ATP over other ATP analogs, but still retained a 30 microm K(m) for ATP. This mutant recombinant C-subunit was used to identify three novel PKA substrates. One protein, a novel mitochondrial ChChd protein, ChChd3, was identified, suggesting that PKA may regulate mitochondria proteins.

1593 related Products with: Identification of ChChd3 as a novel substrate of the cAMP-dependent protein kinase (PKA) using an analog-sensitive catalytic subunit.

to PKA--RIIA (Protein Ki PKA (Protein Kinase A) Ac Mouse Anti-Protein Kinase to M-Calpain (E.C. 3.4.2 Anti-BACE-1 (Memapsin-2, Mouse Anti-Bovine PKA Reg PABP1-dependent poly A-sp voltage-dependent calcium Recombinant PKA regulator Recombinant PKA regulator Recombinant PKA regulator Rabbit Anti-G protein bet

Related Pathways

paperclip

#16009706   2005/09/13 Save this To Up

Identification of N10-substituted phenoxazines as potent and specific inhibitors of Akt signaling.

A series of 30 N10-substituted phenoxazines were synthesized and screened as potential inhibitors of Akt. In cellular assays at 5 mum, 17 compounds inhibited insulin-like growth factor 1 (IGF-I)-stimulated phosphorylation of Akt (Ser-473) by at least 50% but did not inhibit IGF-I-stimulated phosphorylation of Erk-1/2 (Thr-202/Tyr-204). Substitutions at the 2-position (Cl or CF3) did not alter inhibitory activity, whereas N10-substitutions with derivatives having acetyl (20B) or morpholino (12B) side chain lost activity compared with propyl or butyl substituents (7B and 14B). Inhibition of Akt phosphorylation was associated with the inhibition of IGF-I stimulation of the mammalian target of rapamycin phosphorylation (Ser-2448 and Ser-2481), phosphorylation of p70 S6 kinase (Thr-389), and ribosomal protein S6 (Ser-235/236) in Rh1, Rh18, and Rh30 cell lines. The two most potent compounds 10-[4'-(N-diethylamino)butyl]-2-chlorophenoxazine (10B) and 10-[4'-[(beta-hydroxyethyl)piperazino]butyl]-2-chlorophenoxazine (15B) (in vitro, IC50 approximately 1-2 microM) were studied further. Inhibition of Akt phosphorylation correlated with inhibition of its kinase activity as determined in vitro after immunoprecipitation. Akt inhibitory phenoxazines did not inhibit the activity of recombinant phosphatidylinositol 3'-kinase, PDK1, or SGK1 but potently inhibited the kinase activity of recombinant Akt and Akt deltaPH, a mutant lacking the pleckstrin homology domain. Akt inhibitory phenoxazines blocked IGF-I-stimulated nuclear translocation of Akt in Rh1 cells and suppressed growth of Rh1, Rh18, and Rh30 cells (IC50 2-5 microM), whereas "inactive" derivatives were > or = 10-fold less potent inhibitors of cell growth. In contrast to rapamycin analogs, Akt inhibitory phenoxazines induced significant levels of apoptosis under serum-containing culture conditions at concentrations of agent consistent with Akt inhibition. Thus, the cellular responses to phenoxazine inhibitors of Akt appear qualitatively different from the rapamycin analogs. Modeling studies suggest inhibitory phenoxazines may bind in the ATP-binding site, although ATP competition studies were unable to distinguish between competitive and noncompetitive inhibition.

2005 related Products with: Identification of N10-substituted phenoxazines as potent and specific inhibitors of Akt signaling.

AKT PKB Signaling Phospho PathwayReady™ PI3 K Akt Cell Meter™ JC 10 Mitoc Cell Meter™ JC 10 Mitoc Cell Meter™ NIR Mitocho Cell Meter™ NIR Mitocho Cell Meter™ Mitochondri Screen Quest™ Membrane Screen Quest™ Membrane Screen Quest™ Membrane Screen Quest™ Membrane AKT Phospho-Specific Arra

Related Pathways

  •  
  • No related Items
paperclip

#15968404   2005/06/21 Save this To Up

Thrombin activates the p21-activated kinase in pulmonary artery smooth muscle cells. Role in tissue factor expression.

The p21-activated serine/threonine kinases (PAK) play an important role in a variety of cellular functions. However, their role in the smooth muscle response to thrombin, which is activated upon vascular injury and promotes vascular remodelling processes, is not resolved. Here we investigated the role of PAK in thrombin signalling and regulation of tissue factor (TF), the activator of the extrinsic coagulation cascade, in pulmonary artery smooth muscle cells (PASMC), the main cell type responsible for vascular remodelling in pulmonary hypertension. PAK was rapidly phosphorylated in response to thrombin. Thrombin and active PAKT423E phosphorylated p38 MAP kinase (p38MAPK), ERK1/2, phosphatidylinositol-dependent kinase-1 (PDK1) and protein kinase B/Akt (PKB) whereas kinase-deficient PAK1 prevented activation of these kinases by thrombin. In addition, kinase- deficient MKK3 inhibited activation of PDK1 and PKB by thrombin. Further, thrombin and active PAK1 induced TF expression and promoter activity while kinase-deficient PAK1 diminished thrombin-induced TF upregulation. Moreover, kinase-deficient MKK3, PDK1 and PKB inhibited thrombin- and PAK-dependent TF expression and promoter activity. Together these findings show that PAK is a critical element of thrombin signalling in PASMC which is involved in the regulation of TF expression by sequentially activating MKK3/p38MAPK, PDK1 and PKB. Thus, PAK may play an important role in promoting vascular remodelling processes in pulmonary hypertension.

2511 related Products with: Thrombin activates the p21-activated kinase in pulmonary artery smooth muscle cells. Role in tissue factor expression.

Macrophage Colony Stimula Macrophage Colony Stimula T-2 Toxin Mycotoxins ELIS Zearalenone Mycotoxins EL Human Internal Mammary Ar GFP Expressing Human Inte Goat Anti-Human Tissue Fa FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu

Related Pathways

paperclip

#15890450   2005/10/03 Save this To Up

Activation of a GST-tagged AKT2/PKBbeta.

The protein kinase AKT is a key regulator for cell growth, cell survival and metabolic insulin action. However, the mechanism of activation of AKT in vivo, which presumably involves membrane recruitment of the kinase, oligomerization, and multiple phosphorylation events, is not fully understood. In the present study, we have expressed and purified dimeric GST-fusion proteins of human protein kinase AKT2 (DeltaPH-AKT2) in milligram quantities via the baculovirus expression system. Treatment of virus-infected insect cells with the phosphatase inhibitor okadaic acid (OA) led to phosphorylation of the two regulatory phosphorylation sites, Thr309 and Ser474, and to activation of the kinase. Likewise, phosphorylation of Thr309 in vitro by recombinant PDK1 or mutation of Thr309 and Ser474 to acidic residues rendered the kinase constitutively active. However, even though the specific activity of our AKT2 was increased 15-fold compared to previous reports, GST-mediated dimerization alone did not lead to an activation of the kinase. Whereas both mutagenesis and phosphorylation led to an increase in the turnover number of the enzyme, only the latter resulted in a marked reduction (20-fold) of the apparent Km value for the exogenous substrate Crosstide, indicating that this widely used mutagenesis only partially mimics phosphorylation. Kinetic analysis of GST-AKT2 demonstrates that phosphorylation of Thr309 in the activation loop of the kinase is largely responsible for the observed reduction in Km and for a subsequent 150-fold increase in the catalytic efficiency (k(cat)/Km) of the enzyme. Highly active AKT2 constructs were used in autophosphorylation reactions in vitro, where inactive AKT2 kinases served as substrates. As a matter of fact, we found evidence for a minor autophosphorylation activity of AKT2 but no significant autophosphorylation of any of the two regulatory sites, Thr309 or Ser474.

2842 related Products with: Activation of a GST-tagged AKT2/PKBbeta.

Akt2 Akt2 (myr) Akt2 HA Akt2 (Phospho Ser474) Ant Active GST Protein Mouse Anti-Glutathione-S- Mouse Anti-Glutathione-S- Mouse Anti-GST tag Antibo Mouse Anti-GST tag Antibo Mouse Anti-GST tag Antibo Rabbit Anti-GST tag Antib Rabbit Anti-GST tag Antib

Related Pathways

paperclip

#15242977   2004/08/23 Save this To Up

Thromboxane A2 receptor signaling inhibits vascular endothelial growth factor-induced endothelial cell differentiation and migration.

Vascular endothelial growth factor (VEGF) is an important patho-physiological mediator of angiogenesis. VEGF-induced endothelial cell (EC) migration and angiogenesis often occur in complicated environments containing multiple agents capable of modifying the response. Thromboxane (TX) A2 is released from multiple cell types and is a prime mediator of pathogenesis of many vascular diseases. Human EC express both TXA2 receptor (TP) isoforms; however, the effects of individual TP isoforms on VEGF-induced EC migration and angogenesis are unknown. We report here that the TXA2 mimetic [1S-(1alpha, 2beta(5Z), 3alpha(1E, 3R), 4alpha]-7-[3-(3-hydroxy-4-(4'-iodophenoxy)-1-butenyl)-7-oxab icyclo-[2.2.1]heptan-2yl]-5'-heptenoic acid (IBOP) (100 nmol/L) is a potent antagonist (IC50 30 nmol/L) of VEGF-induced EC migration and differentiation. TPbeta, but not TPalpha, expression is required for the inhibition of VEGF-induced migration and angiogenesis. IBOP costimulation suppressed nitric oxide (NO) release from VEGF-treated EC through decreased activation of Akt, eNOS, and PDK1. TPbeta costimulation also ablated the increase in focal adhesion formation in response to VEGF. This mechanism was characterized by decreased recruitment of focal adhesion kinase (FAK) and vinculin to the alpha(v)beta3 integrin and reduced FAK and Src activation in response to VEGF. Addition of NO donors together with transfection of a constitutively active Src construct could circumvent the blockade of VEGF-induced migration by TP; however, neither intervention alone was sufficient. Thus, TP stimulation appears to limit angiogenesis, at least in part, by inhibiting the pro-angiogenic cytokine VEGF. These data further support a role for antagonism of TP activation in enhancing the angiogenic response in tissues exposed to elevated TXA2 levels in which revascularization is important.

2209 related Products with: Thromboxane A2 receptor signaling inhibits vascular endothelial growth factor-induced endothelial cell differentiation and migration.

Mouse Vascular Endothelia Human Endocrine Gland Vas Human Vascular Endothelia Human Vascular Endothelia Mouse Vascular Endothelia Mouse Vascular Endothelia Rat Vascular Endothelial Recombinant Human Vascula Epidermal Growth Factor ( Epidermal Growth Factor ( IGF-1R Signaling Phospho- CD31, Endothelial Cell;

Related Pathways

  •  
  • No related Items
paperclip

#15191648   2004/06/11 Save this To Up

Development of a fluorescence polarization bead-based coupled assay to target different activity/conformation states of a protein kinase.

Most of the protein kinase inhibitors being developed are directed toward the adenosine triphosphate (ATP) binding site that is highly conserved in many kinases. A major issue with these inhibitors is the specificity for a given kinase. Structure determination of several kinases has shown that protein kinases adopt distinct conformations in their inactive state, in contrast to their strikingly similar conformations in their active states. Hence, alternative assay formats that can identify compounds targeting the inactive form of a protein kinase are desirable. The authors describe the development and optimization of an Immobilized Metal Assay for Phosphochemicals (IMAP)-based couple d assay using PDK1 and inactive Akt-2 enzymes. PDK1 phosphorylates Akt-2 at Thr 309 in the catalytic domain, leading to enzymatic activation. Activation of Akt by PDK1 is measured by quantitating the phosphorylation of Akt-specific substrate peptide using the IMAP assay format. This IMAP-coupled assay has been formatted in a 384-well microplate format with a Z' of 0.73 suitable for high-throughput screening. This assay was evaluated by screening the biologically active sample set LOPAC trade mark and validated with the protein kinase C inhibitor staurosporine. The IC(50) value generated was comparable to the value obtained by the radioactive (33)P-gamma-ATP flashplate transfer assay. This coupled assay has the potential to identify compounds that target the inactive form of Akt and prevent its activation by PDK1, in addition to finding inhibitors of PDK1 and activated Akt enzymes.

2404 related Products with: Development of a fluorescence polarization bead-based coupled assay to target different activity/conformation states of a protein kinase.

Cell Meter™ Fluorimetri Cell Meter™ Fluorimetri PKA (Protein Kinase A) Ac Amplite™ Universal Fluo Amplite™ Universal Fluo Amplite™ Universal Fluo Amplite™ Universal Fluo Amplite™ MMP 3 Activity Amplite™ Fluorimetric H Cell Meter™ Caspase 3 7 Cell Meter™ Caspase 3 7 Cell Meter™ Caspase 3 7

Related Pathways

  •  
  • No related Items
paperclip

#15175348   2004/08/02 Save this To Up

Involvement of 3-phosphoinositide-dependent protein kinase-1 in the MEK/MAPK signal transduction pathway.

The phosphatidylinositide-3-OH kinase/3-phospho-inositide-dependent protein kinase-1 (PDK1)/Akt and the Raf/mitogen-activated protein kinase (MAPK/ERK) kinase (MEK)/mitogen-activated protein kinase (MAPK) pathways have central roles in the regulation of cell survival and proliferation. Despite their importance, however, the cross-talk between these two pathways has not been fully understood. Here we report that PDK1 promotes MAPK activation in a MEK-dependent manner. In vitro kinase assay revealed that the direct targets of PDK1 in the MAPK pathway were the upstream MAPK kinases MEK1 and MEK2. The identified PDK1 phosphorylation sites in MEK1 and MEK2 are Ser222 and Ser226, respectively, and are known to be essential for full activation. To date, these sites are thought to be phosphorylated by Raf kinases. However, PDK1 gene silencing using small interference RNA demonstrates that PDK1 is associated with maintaining the steady-state phosphorylated MEK level and cell growth. The small interference RNA-mediated down-regulation of PDK1 attenuated maximum MEK and MAPK activities but could not prolong MAPK signaling duration. Stable and transient expression of constitutively active MEK1 overcame these effects. Our results suggest a novel cross-talk between the phosphatidylinositide-3-OH kinase/PDK1/Akt pathway and the Raf/MEK/MAPK pathway.

2303 related Products with: Involvement of 3-phosphoinositide-dependent protein kinase-1 in the MEK/MAPK signal transduction pathway.

Signal transduction antib GPCR Signaling to MAPK ER AMPK Signaling Phospho-Sp IGF-1R Signaling Phospho- MAPK Phospho-Specific Arr mTOR Signalign Phospho-Sp p53 Signaling Phospho-Spe T-Cell Receptor Signaling TGF-Beta Signaling Phosph p130Cas-associated protei Mouse Protein Z-Dependent Signal Transduction Anti

Related Pathways