Only in Titles

           Search results for: Native Human Apo Transferrin   

paperclip

#28609757   2017/06/13 Save this To Up

A molecular docking study of the interactions between human transferrin and seven metallocene dichlorides.

Human Transferrin (hTf) is a metal-binding protein found in blood plasma and is well known for its role in iron delivery. With only a 30% of its capacity for Fe(+3) binding, this protein has the potential ability to transport other metal ions or organometallic compounds from the blood stream to all cell tissues. In this perspective, recent studies have described seven metallocene dichlorides (Cp2M(IV)Cl2, M(IV)=V, Mo, W, Nb, Ti, Zr, Hf) suitable as anticancer drugs and less secondary effects than cisplatin. However, these studies have not provided enough data to clearly explain how hTf binds and transports these organometallic compounds into the cells. Thus, a computational docking study with native apo-hTf using Sybyl-X 2.0 program was conducted to explore the binding modes of these seven Cp2M(IV)Cl2 after their optimization and minimization using Gaussian 09. Our model showed that the first three Cp2M(IV)Cl2 (M(IV)=V, Mo, W) can interact with apo-hTf on a common binding site with the amino acid residues Leu-46, Ile-49, Arg-50, Leu-66, Asp-69, Ala-70, Leu-72, Ala-73, Pro-74 and Asn-75, while the next four Cp2M(IV)Cl2 (M(IV)=Nb, Ti, Zr, Hf) showed different binding sites, unknown until now. A decreasing order in the total score (equal to -log Kd) was observed from these docking studies: W (5.4356), Mo (5.2692), Nb (5.1672), V (4.5973), Ti (3.6529), Zr (2.0054) and Hf (1.8811). High and significant correlation between the affinity of these seven ligands (metallocenes) for apo-hTf and their bond angles CpMCp (r=0.94, p<0.01) and Cl-M-Cl (r=0.95, p<0.01) were observed, thus indicating the important role that these bond angles can play in ligand-protein interactions. Fluorescence spectra of apo-hTf, measured at pH 7.4, had a decrease in the fluorescence emission spectrum with increasing concentration of Cp2M(IV)Cl2. Experimental data has a good correlation between KA (r=0.84, p=0.027) and Kd (r=0.94, p=0.0014) values and the calculated total scores obtained from our docking experiments. In conclusion, these results suggest that the seven Cp2M(IV)Cl2 used for this study can interact with apo-hTf, and their affinity was directly and inversely proportional to their bond angles CpMCp and ClMCl, respectively. Our docking studies also suggest that the binding of the first three Cp2M(IV)Cl2 (M(IV)=V, Mo, W) to hTf could abrogate the formation of the hTf-receptor complex, and as a consequence the metallocene-hTf complex might require another transport mechanism in order to get into the cell.

2727 related Products with: A molecular docking study of the interactions between human transferrin and seven metallocene dichlorides.

Growth Differentiation Fa Rabbit Anti-Human Androge Rabbit Anti-Human Androge Macrophage Colony Stimula RANK Ligand Soluble, Huma RANK Ligand Soluble, Huma TCP-1 theta antibody Sour Docking protein 3 antibod Native Human Apo Transfer Native Human Apo Transfer Native Human Apo Transfer Anti RAGE (Receptor for A

Related Pathways

paperclip

#26652124   2015/12/14 Save this To Up

Novel "bi-modal" H2dedpa derivatives for radio- and fluorescence imaging.

A novel pyridyl functionalized analog of the promising hexadentate (68)Ga(3+) chelate H2dedpa (N4O2, 1,2-[[6-carboxy-pyridin-2-yl]-methylamine]ethane) was successfully synthesized and characterized. This new bifunctional chelate (BFC) was used to prepare the first proof-of-principle bi-modal H2dedpa derivative for fluorescence and nuclear imaging. Two bi-modal H2dedpa derivatives were prepared: H2dedpa-propylpyr-FITC and H2dedpa-propylpyr-FITC-(N,N'-propyl-2-NI) (FITC=fluorescein, pyr=pyridyl functionalized, NI=nitroimidazole). The ligands possess the strong gallium-coordinating atoms contained within dedpa(2-) that are ideal for radiolabeling with (68)Ga(3+) for positron-emission tomography (PET) imaging, and two fluorophores for optical imaging. In addition, one analog contains two NI moieties for specific entrapment of the tracer in hypoxic cells. These new bi-modal analogs were compared to the native unfunctionalized H2dedpa scaffold to determine the extent to which the addition of pyridyl functionalization would affect metal coordination, and complex stability. The non-radioactive gallium complexes were tested in a 3D tumor spheroid model. The novel pyridyl bis-functionalized H2dedpa ligand, H2dedpa-propylpyr-NH2, was quantitatively radiolabeled with (67)Ga (RCY>99%) under reaction conditions commensurate with unfunctionalized H2dedpa (10min at room temperature) at ligand concentrations as low as 10(-5)M. The resultant (67)Ga-complex withstood transchelation to the in vivo metal-binding competitor apo-transferrin (2h at 37°C, 93% intact), signifying that [Ga(dedpa-propylpyr-NH2)](+) is a kinetically inert complex suitable for in vivo use, but exhibited slightly reduced stability compared to the native [(67)Ga(dedpa)] scaffold (>99% intact). Finally, bi-model fluorescent Ga-dedpa compounds were successfully imaged in a 3D tumor spheroid model. The Ga-dedpa-FITC-NI derivative was specifically localized in the central hypoxic core of the spheroid.

1136 related Products with: Novel "bi-modal" H2dedpa derivatives for radio- and fluorescence imaging.

Amplite™ Fluorimetric F Cellufine Formyl , 50 ml Cellufine Formyl Media Cellufine Formyl , 500 ml Cellufine Formyl Media Cellufine Formyl Media Formalin Solution (20%) Formalin Solution (20%) Formalin Solution (20%) Formalin (10% Neutral Bu Formalin (10% Neutral Bu PolyTek HRP Anti-Rabbit

Related Pathways

  •  
  • No related Items
paperclip

#25849867   2015/04/08 Save this To Up

Oxidation by neutrophils-derived HOCl increases immunogenicity of proteins by converting them into ligands of several endocytic receptors involved in antigen uptake by dendritic cells and macrophages.

The initiation of adaptive immune responses to protein antigens has to be preceded by their uptake by antigen presenting cells and intracellular proteolytic processing. Paradoxically, endocytic receptors involved in antigen uptake do not bind the majority of proteins, which may be the main reason why purified proteins stimulate at most weak immune responses. A shared feature of different types of adjuvants, capable of boosting immunogenicity of protein vaccines, is their ability to induce acute inflammation, characterized by early influx of activated neutrophils. Neutrophils are also rapidly recruited to sites of tissue injury or infection. These cells are the source of potent oxidants, including hypochlorous acid (HOCl), causing oxidation of proteins present in inflammatory foci. We demonstrate that oxidation of proteins by endogenous, neutrophils-derived HOCl increases their immunogenicity. Upon oxidation, different, randomly chosen simple proteins (yeast alcohol dehydrogenase, human and bovine serum albumin) and glycoproteins (human apo-transferrin, ovalbumin) gain the ability to bind with high affinity to several endocytic receptors on antigen presenting cells, which seems to be the major mechanism of their increased immunogenicity. The mannose receptor (CD206), scavenger receptors A (CD204) and CD36 were responsible for the uptake and presentation of HOCl-modified proteins by murine dendritic cells and macrophages. Other scavenger receptors, SREC-I and LOX-1, as well as RAGE were also able to bind HOCl-modified proteins, but they did not contribute significantly to these ligands uptake by dendritic cells because they were either not expressed or exhibited preference for more heavily oxidised proteins. Our results indicate that oxidation by neutrophils-derived HOCl may be a physiological mechanism of conferring immunogenicity on proteins which in their native forms do not bind to endocytic receptors. This mechanism might enable the immune system to detect infections caused by pathogens not recognized by pattern recognition receptors.

1359 related Products with: Oxidation by neutrophils-derived HOCl increases immunogenicity of proteins by converting them into ligands of several endocytic receptors involved in antigen uptake by dendritic cells and macrophages.

BYL-719 Mechanisms: PI3K- GLP 2 ELISA Kit, Rat Prog Rat Anti-Mouse Dendritic Octyl â D 1 thioglucopyr HIV type O envelope antig HIV 1 intergase antigen. anti HSV (II) gB IgG1 (mo anti HCMV IE pp65 IgG1 (m anti HCMV gB IgG1 (monocl Macrophage Colony Stimula Macrophage Colony Stimula anti H inh human blood an

Related Pathways

paperclip

#17511013   2007/06/05 Save this To Up

Specific UV photodissociation of tyrosyl-containing peptides in multistage mass spectrometry.

UV photodissociation (UVPD) at 262 nm has been carried out on protonated tyrosyl-containing peptides formed by trypsin digestion of apo-transferrin. Under UVPD, the main event is the fragmentation of the C(alpha)-C(beta) bond of the tyrosyl residues leading to a radical ion 107 Da below the precursor ion. The dissociation rate of this specific cleavage appears to be strongly dependent on the peptide sequence and is more prominent on the singly protonated species than on the doubly protonated state. The fragmentation spectra resulting from collisional activation of the protonated even-electron native peptides and of the odd-electron radical species prepared by UVPD are dominated by y-type backbone cleavages. A comparison of their respective y-ion pattern shows complementarities since the combination of both increases the sequence coverage of the peptide sequence. The specific detection of the neutral loss of 107 Da from peptides witnesses the content of at least one tyrosyl residue and, though preliminary, is proposed as a potential new filtering strategy during protein database searching.

1875 related Products with: Specific UV photodissociation of tyrosyl-containing peptides in multistage mass spectrometry.

CAL-101 Mechanisms: PI3K- BYL-719 Mechanisms: PI3K- GSK-2636771 Mechanisms: P IPI-145 (INK-1197) Mechan Apoptosis antibody array Cell cycle antibody array Cytokine antibody array i Signal transduction antib AKT Phospho-Specific Arra AKT PKB Signaling Phospho AMPK Signaling Phospho-Sp Apoptosis Phospho-Specifi

Related Pathways

paperclip

#15519234   2004/11/02 Save this To Up

Indirect detection of protein-metal binding: interaction of serum transferrin with In3+ and Bi3+.

Transferrins comprise a class of monomeric glycoproteins found in all vertebrates, whose function is iron sequestration and transport. In addition to iron, serum transferrin also binds a variety of other metals and is believed to provide a route for the in vivo delivery of such metals to cells. In the present study, ESI MS is used to investigate interactions between human serum transferrin and two nonferrous metals, indium (a commonly used imaging agent) and bismuth (a component of many antiulcer drugs). While the UV-Vis absorption spectroscopy measurements clearly indicate that both metals bind strongly to transferrin in solution, the metal-protein complex can be detected by ESI MS only for indium, but not for bismuth. Despite the apparently low stability of the transferrin-bismuth complex in the gas phase, presence of such complex in solution can be established by ESI MS indirectly. This is done by monitoring the evolution of charge state distributions of transferrin ions upon acid-induced protein unfolding in the presence and in the absence of the metal in solution. The anomalous instability of the transferrin-bismuth complex in the gas phase is rationalized in terms of conformational differences between this form of transferrin and the holo-forms of this protein produced by binding of metals with smaller ionic radii (e.g., Fe3+ and In3+). The large size of Bi3+ ion is likely to prevent formation of a closed conformation (canonical structure of the holo-protein), resulting in a non-native metal coordination. It is suggested that transferrin retains the open conformation (characteristic of the apo-form) upon binding Bi3+, with only two ligands in the metal coordination sphere provided by the protein itself. This suggestion is corroborated by the results of circular dichroism measurements in the near-UV range. Since the cellular consumption of metals in the transferrin cycle critically depends upon recognition of the holo-protein complex by the transferrin receptor, the noncanonical conformation of the transferrin-bismuth complex may explain very inefficient delivery of bismuth to cells even when a high dosage of bismuth-containing drugs is administered for prolonged periods of time.

1261 related Products with: Indirect detection of protein-metal binding: interaction of serum transferrin with In3+ and Bi3+.

Chicken S100 calcium bind Rabbit Anti-Rat Androgen Retinol Binding Protein S Acyl CoA binding Protein E. coli SSB (Single Stran E. coli SSB (Single Stran E. coli SSB (Single Stran E. coli SSB (Single Stran Taq SSB (Single Stranded Taq SSB (Single Stranded Mouse Anti-Human Retinol S100 alpha - Rabbit polyc

Related Pathways

paperclip

#15296447   2004/08/06 Save this To Up

Expression of functional human transferrin in stably transfected Drosophila S2 cells.

Human transferrin (hTf) is a serum glycoprotein involved in Fe3+ transport. Here, a plasmid encoding the hTf gene fused with a hexahistidine (His6) epitope tag under Drosophila metallothionein promoter (pMT) was stably transfected into Drosophila melanogaster S2 cells as a nonlytic plasmid-based system. Following 3 days of copper sulfate induction, transfected S2 cells were found to secrete hTf into serum-free culture medium at a competitively high expression level of 40.8 microg/mL, producing 6.8 microg/mL/day in a 150-mL spinner flask culture. Purification of secreted recombinant hTf using immobilized metal affinity chromatography (IMAC) yielded 95.5% pure recombinant hTf with a recovery of 32%. According to MALDI-TOF mass spectrometry analysis, purified S2 cell-derived His6-tagged recombinant hTf had a molecular weight (76.4 kDa) smaller than that of native apo-hTf (78.0 kDa). 2-Dimensional gel electrophoresis patterns showed recombinant hTf had a simpler and less acidic profile compared to that of native hTf. These data suggest recombinant hTf was incompletely (noncomplex) glycosylated and lacked sialic acids on N-glycans. However, this difference in N-glycan structure compared to native hTf had no effect on the iron-binding activity of recombinant hTf. The present data show that a plasmid-based stable transfection S2 cell system can be successfully employed as an alternative for producing secreted functional recombinant hTf.

1357 related Products with: Expression of functional human transferrin in stably transfected Drosophila S2 cells.

Macrophage Colony Stimula Macrophage Colony Stimula anti Transferrin receptor Human Small Intestine Mic Human Large Intestine Mic Human Internal Mammary Ar GFP Expressing Human Inte MarkerGene™ â Galactos Anti C Reactive Protein A Anti AGO2 Human, Monoclon Anti AGO2 Human, Monoclon anti HSV (II) gB IgG1 (mo

Related Pathways

paperclip

#12372824   2003/01/20 Save this To Up

Synergistic anion and metal binding to the ferric ion-binding protein from Neisseria gonorrhoeae.

The 34-kDa periplasmic iron-transport protein (FBP) from Neisseria gonorrhoeae (nFBP) contains Fe(III) and (hydrogen)phosphate (synergistic anion). It has a characteristic ligand-to-metal charge-transfer absorption band at 481 nm. Phosphate can be displaced by (bi)carbonate to give Fe.CO(3).nFBP (lambda(max) 459 nm). The local structures of native Fe-PO(4)-nFBP and Fe.CO(3).nFBP were determined by EXAFS at the FeK edge using full multiple scattering analysis. The EXAFS analysis reveals that both phosphate and carbonate ligands bind to FBP in monodentate mode in contrast to transferrins, which bind carbonate in bidentate mode. The EXAFS analysis also suggests an alternative to the crystallographically determined position of the Glu ligand, and this in turn suggests that an H-bonding network may help to stabilize monodentate binding of the synergistic anion. The anions oxalate, pyrophosphate, and nitrilotriacetate also appear to serve as synergistic anions but not sulfate or perchlorate. The oxidation of Fe(II) in the presence of nFBP led to a weak Fe(III).nFBP complex (lambda(max) 471 nm). Iron and phosphate can be removed from FBP at low pH (pH 4.5) in the presence of a large excess of citrate. Apo-FBP is less soluble and less stable than Fe.nFBP and binds relatively weakly to Ga(III) and Bi(III) but not to Co(III) ions, all of which bind strongly to apo-human serum transferrin.

1081 related Products with: Synergistic anion and metal binding to the ferric ion-binding protein from Neisseria gonorrhoeae.

Rabbit Anti-Rat Androgen Acyl CoA binding Protein E. coli SSB (Single Stran E. coli SSB (Single Stran E. coli SSB (Single Stran E. coli SSB (Single Stran Taq SSB (Single Stranded Taq SSB (Single Stranded Mouse Anti-Human Retinol S100 alpha - Rabbit polyc Human S100 Calcium Bindin ribosome binding protein

Related Pathways

paperclip

#11958645   2002/04/17 Save this To Up

Human apo A-I and rat transferrin are the principal plasma proteins that bind wine catechins.

The processes of absorption, blood transport, tissular distribution, metabolism, and excretion are at present understood very little. The aim of this study was to investigate blood transport and identify which principal plasma proteins in humans and rats bind to monomeric catechin and procyanidins in red wine ex vivo. Human and rat plasma and serum were incubated with (+)-catechin and procyanidins from grape seed, the origin of red wine catechins. Proteins were separated by SDS-PAGE and native-PAGE to determine which proteins bound to these compounds. The principal protein that bound to (+)-catechin in each species was sequenced. SDS-PAGE showed that (+)-catechin and procyanidins mainly bound to a protein of about 80 kDa in rats and 35 kDa in humans. Their sequencing indicated that these proteins were apo A-I in humans and transferrin in rats. The fact that red wine procyanidins bind to both proteins suggests that they may have a role in reverse cholesterol transport and in the oxidizing action of iron.

1275 related Products with: Human apo A-I and rat transferrin are the principal plasma proteins that bind wine catechins.

Proteins and Antibodies H Proteins and Antibodies H Proteins and Antibodies H Proteins and Antibodies H Proteins and Antibodies H Proteins and Antibodies H Proteins and Antibodies H Proteins and Antibodies H Proteins and Antibodies H Proteins and Antibodies H Proteins and Antibodies H Angiotensin II [Lys0](Hum

Related Pathways

paperclip

#11397094   2001/06/08 Save this To Up

Camel lactoferrin, a transferrin-cum-lactoferrin: crystal structure of camel apolactoferrin at 2.6 A resolution and structural basis of its dual role.

Camel lactoferrin is the first protein from the transferrin superfamily that has been found to display the characteristic functions of iron binding and release of lactoferrin as well as transferrin simultaneously. It was remarkable to observe a wide pH demarcation in the release of iron from two lobes. It loses 50 % iron at pH 6.5 and the remaining 50 % iron is released only at pH values between 4.0 and 2.0. Furthermore, proteolytically generated N and C-lobes of camel lactoferrin showed that the C-lobe lost iron at pH 6.5, while the N-lobe lost it only at pH less than 4.0. In order to establish the structural basis of this striking observation, the purified camel apolactoferrin was crystallized. The crystals belong to monoclinic space group C2 with unit cell dimensions a=175.8 A, b=80.9 A, c=56.4 A, beta=92.4 degrees and Z=4. The structure has been determined by the molecular replacement method and refined to an R-factor of 0.198 (R-free=0.268) using all the data in the resolution range of 20.0-2.6 A. The overall structure of camel apolactoferrin folds into two lobes which contain four distinct domains. Both lobes adopt open conformations indicating wide distances between the iron binding residues in the native iron-free form of lactoferrin. The dispositions of various residues of the iron binding pocket of the N-lobe of camel apolactoferrin are similar to those of the N-lobe in human apolactoferrin, while the corresponding residues in the C-lobe show a striking similarity with those in the C-lobes of duck and hen apo-ovotransferrins. These observations indicate that the N-lobe of camel apolactoferrin is structurally very similar to the N-lobe of human apolactoferrin and the structure of the C-lobe of camel apolactoferrin matches closely with those of the hen and duck apo-ovotransferrins. These observations suggest that the iron binding and releasing behaviour of the N-lobe of camel lactoferrin is similar to that of the N-lobe of human lactoferrin, whereas that of the C-lobe resembles those of the C-lobes of duck and hen apo-ovotransferrins. Hence, it correlates with the observation of the N-lobe of camel lactoferrin losing iron at a low pH (4.0-2.0) as in other lactoferrins. On the other hand, the C-lobe of camel lactoferrin loses iron at higher pH (7.0-6.0) like transferrins suggesting its functional similarity to that of transferrins. Thus, camel lactoferrin can be termed as half lactoferrin and half transferrin.

2074 related Products with: Camel lactoferrin, a transferrin-cum-lactoferrin: crystal structure of camel apolactoferrin at 2.6 A resolution and structural basis of its dual role.

E-64; Appearance White cr E-64; Appearance White cr ATF2 (Ab 62 or 44) Antibo ATF2 (Ab 69 or 51) Antibo Androgen Receptor (Ab 650 AE 6220 Dual Slab Chamber AE 6220 Dual Slab Chamber TEM-8 ATR1 Blocking Pepti 17β-Acetoxy-2α-bromo-5 3-O-Acetyl 5,14-Androstad 3-O-Acetyl-17-O-tert-buty 3β-O-Acetyl-androsta-5,1

Related Pathways

paperclip

#10329777   1999/08/13 Save this To Up

Structure of mare apolactoferrin: the N and C lobes are in the closed form.

The structure of mare apolactoferrin (MALT) has been determined at 3. 8 A resolution by the molecular-replacement method, using the structure of mare diferric lactoferrin (MDLT) as the search model. The MDLT structure contains two iron-binding sites: one in the N-terminal lobe, lying between domains N1 and N2, and one in the C-terminal lobe between domains C1 and C2. Both lobes have a closed structure. MALT was crystallized using the microdialysis method with 10%(v/v) ethanol in 0.01 M Tris-HCl. The structure has been refined to a final R factor of 0.20 for all data to 3.8 A resolution. Comparison of the structure of MALT with that of MDLT showed that the domain arrangements in these structures are identical. However, the structure of MALT is very different to the structures of human apolactoferrin (HALT) and duck apo-ovotransferrin (DAOT), in which the domain associations differ greatly. In HALT, the N lobe adopts an open conformation while the C lobe is in the closed form. On the other hand, in DAOT both the N and the C lobes adopt the open form. These results indicate the domain arrangements in these proteins to be an important structural feature related to their specific biological functions. Based on the structures of MALT, HALT and DAOT, it can be stated that the native apoproteins of the transferrin family adopt three forms: (i) with both the N and the C lobes in closed forms, as observed in MALT, (ii) with the N lobe open and the C lobe closed, as observed in HALT, and (iii) with both the N and the C lobes open, as found in DAOT. All these proteins attain a convergent form when iron is bound to them, suggesting an efficient and unique form of iron binding. The interface between the N and C lobes, which is formed by N1-C1 contact in the core of the molecule, does not change significantly.

2937 related Products with: Structure of mare apolactoferrin: the N and C lobes are in the closed form.

Thermal Shaker with cooli FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu FDA Standard Frozen Tissu Normal mouse multiple org Normal rat multiple organ Normal rat multiple organ Normal rat multiple organ Multiple lung carcinoma ( Theobromine CAS Number [8 Theophylline CAS Number [

Related Pathways