Only in Titles

Search results for: JUP Mouse Monoclonal Antibody

paperclip

#15261432   // To Up

Aberrant E-cadherin and gamma-catenin expression in malignant mesothelioma and its diagnostic and biological relevance.

Cadherins and their associated cytoplasmic proteins, catenins, are critical to the maintenance of normal tissue integrity and the suppression of cancer invasion. The cadherin profile in malignant mesothelioma (MM) is not well defined and the role of the cadherin-catenin system in the pathogenesis of MM remains to be determined. By means of Western blot analysis and immunohistochemistry the expression of E (epithelial)-, N (neural)-, P (placental)-cadherin, and alpha-, beta- and gamma-catenins was studied in nine human MM cell lines and five human mesothelial cell lines. Mesothelial cells consistently expressed only N-cadherin and alpha- and beta-catenins. All but one MM cell line were N-cadherin-positive and all of them were also positive for alpha- and beta-catenins. E-cadherin was found in six (66.7%) and gamma-catenin in seven (77.8%) MM cell lines. Five of these E-cadherin-positive lines co-expressed N-cadherin and the remaining one was also P-cadherin-positive. Double immunofluorescence staining revealed the plasma membrane co-localisation of both cadherin types in MM cell lines that co-expressed E- and N-cadherin or E- and P-cadherin, respectively. Immunoprecipitation showed complexes of beta-catenin with both cadherin types when co-expressed. The results point to upregulation of E-cadherin and gamma-catenin in most MM cases and demonstrate that cadherin expression is more heterogeneous and less mutually exclusive in MM compared with the mesothelium, although the biological significance of this finding remains unclear.
Sara Orecchia, Francesca Schillaci, Michela Salvio, Roberta Libener, Pier-Giacomo Betta

2811 related Products with: Aberrant E-cadherin and gamma-catenin expression in malignant mesothelioma and its diagnostic and biological relevance.

200 1,000 tests100ug1 mg1000 tests25 mg 5 G100ug2.5 mg10 mg

Related Pathways

paperclip

#11353148   // To Up

Selective disruption of cadherin/catenin complexes by oxidative stress in precision-cut mouse liver slices.

Previous work has shown that chemically induced oxidative stress disrupts the protein interactions of the E-cadherin/beta-catenin/alpha-catenin complex in precision-cut mouse liver slices (Parrish et al., 1999, Toxicol. Sci. 51, 80-86). Although these data suggest a role for oxidative stress in disruption of hepatic cadherin/catenin complexes, multiple complexes are co-expressed in the liver. Both E- and N- cadherin are co-expressed in hepatocytes, as well as beta-catenin and gamma-catenin; thus four distinct complexes mediate cell-cell adhesion in the liver: E-cadherin/beta-catenin/alpha-catenin, E-cadherin/gamma-catenin/alpha-catenin, N-cadherin/beta-catenin/alpha-catenin, and N-cadherin/gamma-catenin/alpha-catenin. Taking advantage of the retention of normal organ architecture and cellular heterogeneity offered by precision-cut mouse liver slices, the current study was designed to examine the impact of chemically induced oxidative stress on cadherin/catenin complexes. Precision-cut mouse liver slices were challenged with diamide (25-250 microM; 6 h) or tert-butylhydroperoxide (5-50 microM; 6 h). A polyclonal antibody against beta- or gamma-catenin was used to immunoprecipitate proteins prior to Western-blot analysis with monoclonal antibodies to E- or N-cadherin. Although a decrease in E-cadherin:beta-catenin co-immunoprecipitation was seen, interactions between beta-catenin and N-cadherin were not disrupted by chemical challenge. In addition, no effect on protein interactions of gamma-catenin with either cadherin was observed. Indirect immunofluorescence was used to co-localize catenins and cadherins following chemical challenge. Consistent with the biochemical observations, a heterogeneous reduction in co-localization of E-cadherin and beta-catenin was seen in precision-cut liver slices, but not other cadherin/catenin complexes. Taken together, these data suggest that oxidative stress selectively disrupts E-cadherin/beta-catenin complexes in the liver. This response is dictated, in part, by the protein composition of the cell-adhesion complex.
M Schmelz, V J Schmid, A R Parrish

1791 related Products with: Selective disruption of cadherin/catenin complexes by oxidative stress in precision-cut mouse liver slices.

0.2 mg100.00 ug100.00 ug100 μg2 200 10100ml1 mg96T

Related Pathways